
2022/06/26 01:15 1/7 RADIUSdesk MQTT Implementation

RADIUSdesk - https://www.radiusdesk.com/wiki/

RADIUSdesk MQTT Implementation
Introduction

MESHdesk and APdesk traditionally makes use of a heartbeat system to communicate and
report to the back-end.
We now also include a MQTT based implementation to allow real-time communication between
the mesh nodes or access points and the back-end.
This implementation is used as a compliment to the heartbeat system, making it more robust
while offering you added real-time communication.
The MQTT implementation is not compulsory in order to have a working deployment but it does
offer a lot of advantages.
It is ideal for hardware that is used in a IOT environment where you need immediate execution
of commands.

Architecture
Consider the following diagram and then the subsequent discussion of each of the components.

Last update: 2022/06/19 21:48 technical:mqtt https://www.radiusdesk.com/wiki/technical/mqtt

https://www.radiusdesk.com/wiki/ Printed on 2022/06/26 01:15

ExtJS GUI

The ExtJS GUI can be used to send commands to the mesh nodes and access points managed
by MESHdesk and APdesk respectively.
The communication between ExtJS and the CakePHP application consists of REST-like API calls
using HTTP or HTTPS.
This means essentially that these actions can easily be automated or done with another GUI
should the need arise.

https://www.radiusdesk.com/wiki/_detail/technical/mqtt-implementation.png?id=technical%3Amqtt

2022/06/26 01:15 3/7 RADIUSdesk MQTT Implementation

RADIUSdesk - https://www.radiusdesk.com/wiki/

CakePHP

If MQTT support is enabled on the system and someone initiate a command execution action
from the GUI, the controller code handling this request will send the request to the API Gateway.
This communication between the CakePHP controller and the API Gateway also consist of REST-
like API calls using HTTP or HTTPS.

API Gateway

The API Gateway is a Node.js based web service that acts as a middle man.
The MQTT implementation uses a command and response principle.
The API Gateway

Receive instructions from CakePHP and translate them to MQTT publish actions
(Command) which are published to the Mosquitto MQTT Broker.
Subscribe to MQTT topics (Response) on the Mosquitto MQTT Broker which will get input
from the mesh nodes and access points and translate them to HTTP/HTTPS based API calls
to CakePHP.

Mesh nodes and access points

The mesh nodes and access points communicate with the CakePHP back-end using HTTP/HTTPS
to fetch its configuration and do reporting.
If the system has MQTT support enabled the mesh node or access point will configure itself to
publish and subscribe to certain topics on the Mosquitto MQTT Broker.
The system works on a command and response principle.

The mesh node or access point subscribe to a topic where it will expect commands
from the API Gateway.
The mesh node or access point will publish to a topic where the API Gateway expect
responses.
The API Gateway will publish to a topic where the mesh node or access point expect
commands.
The API Gateway will subscribe to a topic where the mesh node or access points publish
their responses.

Enable MQTT
There are two components of the MQTT setup that needs to be configured

Configuration settings for mesh nodes and access points (MESHdesk and APdesk)
Configuration settings for the MQTT API Gateway.

Looking at the code

Command -> CakePHP Controller

Lets look at the /var/www/html/cake3/rd_cake/src/Controller/NodeActionsController.php
file.
When an action is added to a node and MQTT is enabled on the system this code is executed:

if ($cfg['api_mqtt_enabled'] == "1"){
 //Talk to MQTT Broker
 $data = $this->_get_node_mac_mesh_id($formData['node_id']);
 $payload = [

Last update: 2022/06/19 21:48 technical:mqtt https://www.radiusdesk.com/wiki/technical/mqtt

https://www.radiusdesk.com/wiki/ Printed on 2022/06/26 01:15

 'mode' => 'mesh',
 'node_id' => $formData['node_id'],
 'mac' => strtoupper($data['mac']),
 'mesh_id' => strtoupper($data['ssid']),
 'cmd_id' => $entity->id,
 'cmd' => $formData['command'],
 'action' => $formData['action'],
];

 if($this->_check_server($client, $cfg['api_gateway_url'], 5)){
 try {
 $client->request('POST', $cfg['api_gateway_url'] .
'/rd/mesh/command', ['json' => ['message' => $payload]]);
 } catch (\Exception $e) {
 // Do Nothing
 }
 }
}

Command -> API Gateway

The API call to the API Gateway will execute this piece of code in the /opt/Rdcore-API-
Gateway/routes/rdmesh.js file

router.post('/mesh/command', function(req, res){
 //var data = JSON.parse(req.body.message);
 var data = req.body.message;
 var message = JSON.stringify(data);
 console.log(message);
 client.publish('/RD/MESH/' + data.node_id + '/COMMAND', message);
 console.log("Published command to Mesh node: " + data.mac + " MODE
"+data.mode);
 res.json(message);
});

Command -> mqtt.lua

Here is a snippet in /etc/MESHdesk/mqtt.lua which shows what it will do when a message is
published from the API Gateway.
This is the command which it will then respond to.

client.ON_MESSAGE = function(mid, topic, payload)
 -- Parse/Decode JSON Payload
 local jsonStr = luci_json.parse(payload)
 -- Check if message belongs to us (MAC Address)

Response -> mqtt.lua

Depending on the type of command the code in Lua will determine the correct response.
Here is a snippet in /etc/MESHdesk/mqtt.lua which respond to the execute action.
This is part of the code which are processing the command that the mesh node or access point
received (inside the ON_MESSAGE event)

http://www.php.net/strtoupper
http://www.php.net/strtoupper

2022/06/26 01:15 5/7 RADIUSdesk MQTT Implementation

RADIUSdesk - https://www.radiusdesk.com/wiki/

--Here depending on the value of jsonStr['action'] we will either just
execute the command or execute and report the output
if(jsonStr['action'] == 'execute')then
 print("MODE IS "..mode);
 if(mode == 'mesh')then
 message =
luci_json.stringify({mode=mode,node_id=nodeId,mesh_id=meshId,mac=macAddr,cmd
_id=cmdId,status='os_command'});
 end
 if(mode == 'ap')then
 message =
luci_json.stringify({mode=mode,ap_id=apId,mac=macAddr,cmd_id=cmdId,status='o
s_command'});
 end

 local cl_execute = mqtt.new();
 cl_execute:login_set(MQTT_USER, MQTT_PASS)
 cl_execute:connect(MQTT_HOST)
 --Connected now publish
 cl_execute.ON_CONNECT = function()
 cl_execute:publish(cmdTopic, message, qos, retain);
 end
 --Done publishing - now execute command
 cl_execute.ON_PUBLISH = function()
 cl_execute:disconnect();
 os.execute(jsonStr['cmd']);
 end
 cl_execute:loop_forever();
end

Response -> API Gateway

The API Gateway subscribe to the topic which the mesh node or access point publishes to.
Here is a snippet from the /opt/Rdcore-API-Gateway/routes/rdmesh.js file that execute
some code when a message is received on that topic

default:
 request.put({
 url: mesh_controller + '/cake3/rd_cake/node-actions/node-
command.json',
 form: data
 },
 function (err, res, body) {
 if (err) {
 console.error('Error Occurred: ' + err);
 }

 console.log(body);
 }
);
 break;

Last update: 2022/06/19 21:48 technical:mqtt https://www.radiusdesk.com/wiki/technical/mqtt

https://www.radiusdesk.com/wiki/ Printed on 2022/06/26 01:15

Response -> CakePHP Controller

Finally we can look at the CakePHP code that process the response so our system know and can
indicate the mesh node or access point did receive the instruction.
Lets look at the /var/www/html/cake3/rd_cake/src/Controller/NodeActionsController.php
file.

//--This comes from the NodeJS API Gateway Application in response to
'execute' type node_actions
//--This comes from the NodeJS API Gateway Application in FIRST response to
'execute_and_reply' type node_actions
public function nodeCommand(){

 if($this->request->is('put')){
 $data = $this->request->data;
 if((!empty($data['node_id']))||(!empty($data['ap_id']))){
 // update command status to fetched
 $model = 'NodeActions';
 if($data['mode'] == 'ap'){
 $model = 'ApActions';
 }

 $entity = $this->{$model}->find()->where(['id' =>
$data['cmd_id']])->first();
 if($entity){
 $entity->status = 'fetched';
 $this->{$model}->save($entity);
 }

 $this->set(array(
 'data' => $data,
 'success' => true,
 '_serialize' => array('data','success')
));
 } else {
 $this->set(array(
 'message' => 'Node ID not found',
 'success' => false,
 '_serialize' => array('message','success')
));
 }

 } else {
 $this->set(array(
 'message' => 'Send only PUT request',
 'success' => false,
 '_serialize' => array('message','success')
));
 }
}

http://www.php.net/empty
http://www.php.net/empty
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

2022/06/26 01:15 7/7 RADIUSdesk MQTT Implementation

RADIUSdesk - https://www.radiusdesk.com/wiki/

From:
https://www.radiusdesk.com/wiki/ - RADIUSdesk

Permanent link:
https://www.radiusdesk.com/wiki/technical/mqtt

Last update: 2022/06/19 21:48

https://www.radiusdesk.com/wiki/
https://www.radiusdesk.com/wiki/technical/mqtt

	RADIUSdesk MQTT Implementation
	Introduction
	Architecture
	ExtJS GUI
	CakePHP
	API Gateway
	Mesh nodes and access points

	Enable MQTT
	Looking at the code
	Command -> CakePHP Controller
	Command -> API Gateway
	Command -> mqtt.lua
	Response -> mqtt.lua
	Response -> API Gateway
	Response -> CakePHP Controller

